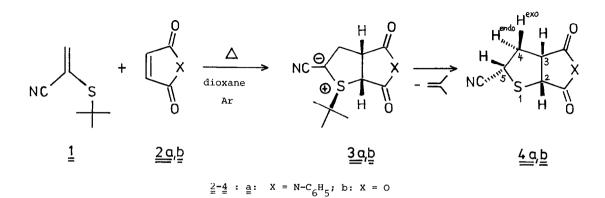
CYCLOADDITIONS WITH CAPTO-DATIVE OLEFINS, 11^{1} TETRAHYDROTHIOPHENES FROM ADDITION OF 2-(TERT-BUTYLTHIO)-ACRYLONITRILE TO DIENOPHILES²⁾

Dietrich Döpp* and Hubert Libera

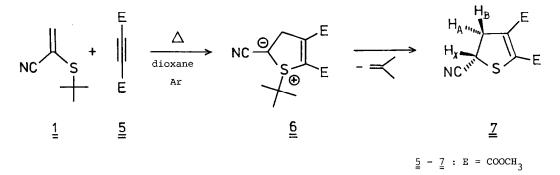

Fachgebiet Organische Chemie der Universität Duisburg Postfach 101629, D-4100 Duisburg 1, Federal Republic of Germany

<u>Summary:</u> With loss of the tert-butyl group, 2-tert-butyl-thioacrylonitrile (1) may be added thermally to N-phenyl maleic imide (2a), maleic anhydride (2b) and other olefins to yield te-trahydrothiophene-2-carbonitriles; from the addition to dimethyl ethyne dicarboxylate, the di-hydrothiophene $\frac{7}{2}$ is obtained.

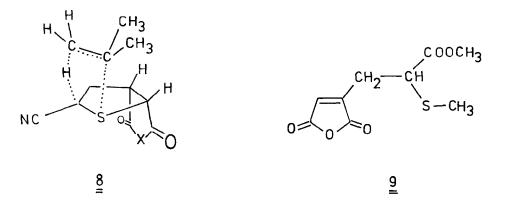
Capto-dative substituent effects³⁾ are a field of considerable current interest^{1,3-8)}. Several groups are interested in $[\pi^4 + \pi^2]$ cycloadditions, in which capto-dative ("c,d-") olefins play the role of the π^2 -component^{4,6-8)}.

On the other hand, the special design of the c,d-alkene $\underline{1}$ may enable the latter to act as 4e-component towards dienophiles. This is supported also by the following considerations: The two lowest energy bands in the He-I_{α}-photoelectron spectrum⁹ of $\underline{1}$ at 9.07 eV and 10.25 eV have been assigned⁹ to ionizations from the ($\mathcal{T}_{cc} - \mathcal{T}_{s}$)- and ($\mathcal{T}_{cc} + \mathcal{T}_{s}$)-orbitals, respectively. From its first I.P. alone, $\underline{1}$ should resemble an electron rich olefin like butylvinylether (1st I.P.: 9.08 eV¹⁰) or methylvinylsulfide (8.45 eV¹¹) rather than an electron poor olefin like acrylonitrile (10.91 eV¹⁰). Cyclic thioenolethers do undergo [3+2]-cycloadditions to electron poor dienophiles to form unstable five membered cyclic sulfonium ylids¹².

When 19.4 mmoles of $\frac{1}{2}$ were refluxed with 11.9 mmoles of N-phenyl maleic imide ($\frac{2a}{2}$) in 10 ml of purified dioxane for 5 days under argon, a 77% yield of a crystalline compound, m.p. 237 °C, could be isolated. Structure $\frac{4a}{2}$ (representing c-5-cyano-r-2,c-3-tetrahydrothiophenedicarboxylic


acid N-phenyl imide) was assigned to this compound on the basis of its elemental analysis and its spectral data. MS: m/e = 260 (4.6%, M+2); 258 (86%, M⁺). - IR (KBr): 2230 cm⁻¹ (CN). -300 MHz-¹H NMR (acetone-d₆): Multiplets for one H each at \circ 2.71 (ddd, exo-4-H), 3.11 (ddd, endo-4-H), 4.16 (ddd, 3-H), 4.60 (dd, 5-H), 4.72 (d, 2-H). The following coupling constants have been extracted: ²J= -13.94 Hz, ³J₄-exo, 3⁼ 8.84 Hz, ³J₄-endo, 3⁼ 1.04 Hz, ³J₄-exo, 5⁼ 6.86 Hz ³J₄-endo, 5⁼ 1.02 Hz, ³J₂, 3⁼ 8.14 Hz.

From the reaction of $\frac{1}{2}$ with maleic anhydride, under otherwise similar conditions, only a 19% yield of $\frac{4b}{2}$ could be obtained, m.p. 161 °C. - IR (KBr): 2238 cm⁻¹ (CN), 1865 and 1795 (carboxylic anhydride). - 60 MHz-¹H-NMR (acetone-d₆): Signals for 1 H each at δ 2.75 (ddd, exo-4-H), 3.15 (ddd, endo-4-H), 4.45 (ddd, 3-H), 4.70 (dd, 5-H), 4.95 (d, 2-H), with the following coupling constants: ^{2}J = -14.8 Hz, $^{3}J_{3,4-exo}$ = 8.5 Hz, $^{3}J_{4-exo,5}$ = 6.6 Hz, $^{3}J_{4-endo,5}$ =1.7 Hz, $^{3}J_{4-endo,3}$ = 1.9 Hz, $^{3}J_{2,3}$ = 8.6 Hz. MS (70 eV): m/e 183 (7%, M⁺), 113 (4.6%) and 111 (100%, $c_{cH_{c}NS}$).


Formation of tarry by-products and the instability of the carboxylic anhydride moiety during chromatographic work-up impeded optimization.

Under similar conditions as before, $\underline{1}$ (17 mmoles) also was added (with de-tert-butylation) to dimethyl ethyne dicarboxylate ($\underline{5}$, 11 mmoles) to give an 84% yield of dimethyl 5-cyano-4, 5-dihydrothiophene-2, 3-dicarboxylate ($\underline{7}$), m.p. 68 °C. - IR (KBr): 2240 (CN), 1730 and 1712 (CO, ester), 1620 (C=C). - MS (70 eV): m/e = 229 (2.5%, M+2), 227 (55%, M⁺). - 60 MHz-¹H NMR (ben-zene-d₆): ABX $d_{A} = 2.83$, $d_{B} = 2.99$, $d_{X} = 3.73$, $J_{AB} = -17$ Hz, $J_{AX} = 11.2$ Hz, $J_{BX} = 3.3$ Hz; 3.42 and 3.48 (COOCH₃).

Successful additions have also been carried out²⁾ to norbornene (resulting in a mixture of diastereomers), 4-oxotricyclo[$3.3.0.0^{2}, ^{8}$]oct-6-ene-3-one¹⁴⁾ and cyclooctyne. Liberations of isobutene has been demonstrated by trapping it in a solution of bromine in carbon tetrachloride and identifying the resulting 1,2-dibromo-2-methylpropane by its IR spectrum¹⁵⁾.

Details of the course of this addition reaction of various c,d-olefins, its general scope and its limitations are currently under investigation²⁾. It is tempting to speculate, though, that the primary adduct is a cyano-stabilized ylide like $\underline{3}a, \underline{b}$ or $\underline{6}$, emanating from [3+2] cycloaddition of the electron rich olefin $\frac{1}{2}$ to the electron poor dienophile. The conditions for ylide dealkylation are not as favourable as in the cases reported by $\underline{Gollnick}^{(12)}$, however, (probably ionic) de-tert-butylations from sulfur in cyclic intermediates have been reported in other cases¹⁶⁾. The stereochemistry of $\frac{4}{4\pi}$ (the sole product isolated) as derived from the 300 MHz-¹H NMR spectrum is noteworthy and seems to suggest that the source of the proton attached to C-5 may well be the tert-butyl group itself, which, in the course of its elimination, donates the proton via a five membered cyclic transition state ($\underline{8}$).

It should be pointed out, that an analogue to $\frac{1}{2}$, α -methylthioacrylic-acid methylester, has already been subjected to addition to maleic anhydride, and structure $\frac{9}{2}$ had been assigned to the product¹⁷⁾.

The reaction reported here bears some analogy to the [3+2] cycloaddition of aryl aldehyde N-phenylhydrazones to maleic imides to yield pyrazoles reported recently¹⁸⁾ and employs also the combination of one CCS- and CC-fragment each to hydrothiophenes as does the thiophene synthesis from alkynethiolates and alkynes reported by <u>Petrov</u> and coworkers¹⁹⁾. It is the reversal of the fragmentation of 1-methylthiolanium iodide into ethylene and methyl vinyl sulfide under the influence of molar amounts of phenyl lithium²⁰⁾.

Acknowledgements: We are indebted to Prof. <u>A. Schweig</u>, Marburg, for recording and interpreting the PES of $\frac{1}{2}$. Financial support of this work by Fonds der Chemischen Industrie is gratefully acknowledged.

- 1) Part I: D. Döpp and M. Henseleit, Chem. Ber. <u>115</u>, 798 (1982).
- ²⁾ Taken in part from the planned doctorate thesis of Hubert Libera, University of Duisburg.
- ³⁾ H. G. Viehe, R. Merényi, L. Stella and Z. Janousek, Angew. Chem. <u>91</u>, 982 (1979); Angew. Chem. Int. Ed. Engl. <u>18</u>, 917 (1979).
- 4) H. Bender, D. Döpp and A. M. Nour-el-Din, ESOC II, Stresa, Italy, June 1 5 (1981), book of abstracts p. 125.

- 5) A. De Mesmaeker, L. Vertommen, R. Merényi and H. G. Viehe, Tetrahedron Lett. 23, 69 (1982).
- 6) L. Stella and J. L. Boucher, Tetrahedron Lett. 23, 953 (1982).
- ⁷⁾ F. Texier, A. Derdour, H. Benhaoua, T. Benabdallah and O. Yebdri, Tetrahedron Lett. 23, 1893-1896 (1982).
- 8) D. Döpp and J. Walter, unpublished. Diploma-thesis of J. Walter, University of Duisburg, 1982.
- 9) This photoelectron spectrum has kindly been recorded and interpreted for us by A. Schweig, University of Marburg.
- ¹⁰⁾ K. N. Houk, J. Sims, R. E. Duke, jr., R. W. Strozier and J. K. George, J. Am. Chem. Soc. <u>95</u>, 7287 (1973) with reference to R. Sustmann and R. Trill, Angew. Chem. <u>84</u>, 887 (1972); Angew. Chem. Int. Ed. Engl. <u>11</u>, 838 (1972).
- 11) C. Müller, W. Schäfer, A. Schweig, N. Thon and H. Vermeer, J. Am. Chem. Soc. <u>98</u>, 5540 (1976).
- 12) K. Gollnick and S. Fries, Angew. Chem. <u>92</u>, 848 (1980).
- 13) K.-D. Gundermann and R. Thomas, Chem. Ber. <u>89</u>, 1263 (1956).
- ¹⁴⁾ Prepared according to D. Döpp, U. Langer and H. Libera, Chem. Ber. <u>115</u>, 346 (1982).
- ¹⁵⁾ M. Hayashi, Nippon Kagaku Zasshi, <u>78</u>, 1749 (1957); C. A. <u>52</u>, 5126 d.
- 16) A. J. Lawson, Phosphorus and Sulfur <u>12</u>, 357 (1982).
- ¹⁷⁾ K.-D. Gundermann and H. Schulze, Chem. Ber. <u>94</u>, 3254 (1961).
- 18) Y. A. Ibrahim, S. E. Abdou and S. Selim, Heterocycles (Sendai), Vol. 19/2, 819 (1982).
- ¹⁹⁾ L. S. Rodionova, M. L. Petrov and A. A. Petrov, J. Org. Chem. (USSR) <u>14</u>, 1901 (1978). -See also M. L. Petrov, N. A. Bunina and A. A. Petrov, J. Org. Chem. (USSR) <u>14</u>, 2409 (1978).
- ²⁰⁾ F. Weygand and H. Daniel, Chem. Ber. <u>94</u>, 3145 (1961).

(Received in Germany 2 December 1982)